您的位置首页生活快答

虎门大桥为什么要用悬索桥?

虎门大桥为什么要用悬索桥?

的有关信息介绍如下:

虎门大桥为什么要用悬索桥?

虎门大桥是中国广东省内一座跨海大桥,位于珠江狮子洋之上,为珠江三角洲地区环线高速公路南部联络线(原莞佛高速公路)的组成部分。虎门大桥于1992年10月28日动工建设;于1997年6月9日建成通车;于1999年4月20日通过竣工验收。工程项目总投资额30.2亿元人民币。

2020年5月5日下午,虎门大桥发生异常抖动,全桥路段已实施双向全封闭,禁止通行;5月6日,广东交通集团通报,虎门大桥振动系涡振现象,悬索桥结构安全。

学过物理的都知道,桥梁在某些频率下会发生震动。5月5日,发生的桥面起伏,据说是因为虎门大桥两侧护栏的挡墙(水马)引起,随后将其进行了拆除,但当晚桥面仍然发生抖动。6日上午,广东虎门大桥公司工作人员表示,正常来说,这样的抖动对桥面结构无影响,具体还需专家进一步分析研究。

虎门大桥发生的抖动,被称为涡振,涡振的发生,不一定需要风特别大,低速风也有可能,主要是风速和桥梁结构的自振频率刚好吻合。也就是我们物理中说的共振。

虎门大桥大修办公室副总工程师张鑫敏5日晚接受央视新闻采访时表示,大跨径悬索桥,由于风的作用,会有颤振和涡振。简单来说,颤振可能产生扭转,对桥梁结构有破坏作用,而涡振对桥梁结构不会有影响,只会对行车舒适度有影响,虎门大桥是大跨径悬索桥,属于柔性结构,抖动发生后,把桥面的水马清理了,风速也减小了,涡振就小了很多,之所以仍有抖动,可能是惯性的原因,涡振会慢慢自动消除。

虎门大桥作为悬索桥结构,也就是我们所说的吊桥,从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小荷载所引起的挠度变形。

不过,悬索桥比较灵活,因此它适合大风和地震区的需要,比较稳定的桥在这些地区必须更加坚固和沉重。悬索桥的坚固性不强,在大风情况下交通必须暂时被中断。悬索桥不宜作为重型铁路桥梁。

虎门大桥(Humen Bridge)是中国广东省境内一座连接广州市南沙区与东莞市虎门镇的过江通道,位于珠江干流之上,为珠江三角洲地区环线高速公路南部联络线(原莞佛高速公路)的组成部分。其东起东莞市太平立交,上跨狮子洋入海口,西至广州市南沙立交,线路全长15.76千米,工程项目总投资额30.2亿元人民币。

虎门大桥路面环境

虎门大桥悬索桥墩

虎门大桥主缆采用预制平行索股制作和架设,每束索股由多个平行镀锌高强钢丝排列成正六边形组成。主缆与加劲梁之间采用平行竖直吊索相联系,每个吊点由四根钢丝绳组成。吊索与主缆之间的连接方式为背骑式,配以马鞍形索架。为减少铸件重量,大桥采用铸焊组合形式的索鞍。吊索两端为锌铜合金热铸锚,通过钢加劲梁风嘴锚于箱内。加劲梁采用扁平闭口流线型钢箱梁截面,使用全焊结构;加劲梁端于索塔下系梁设竖向支座以及水平抗风支座。桥面东西索塔处设两道伸缩缝,允许在竖直及水平方向有较大转角。虎门大桥悬索桥主缆系统 、箱梁、鞍座和吊杆均采用经重涂装防腐处理的钢结构。

2、悬索桥下部工程

虎门大桥东西索塔为门式框架结构,由两侧塔柱及其之间的三道系梁组成;两侧塔柱为钢筋混凝土空心薄壁箱型结构,三道系梁均为钢筋混凝土空心箱型截面,预应力束布置在腹板内并穿过塔柱锚于塔壁外侧;受不同地质条件影响,东西索塔分别采用群桩基础和分离式扩大基础。虎门大桥东西锚碇均为重力式,由散索鞍墩、后锚块、锚室组成;主缆通过锚梁、锚杆牢固地锚固在锚碇上,主缆拉力由锚碇钢框架传递至混凝土锚体。

有网友调侃虎门大桥喝醉了;或是说天太热了,大口喘气中;有的还开玩笑称“明天就要开始收费了,桥激动了”。

值得注意的是,4 月 26 日,武汉鹦鹉洲长江大桥桥体也出现了波浪状晃动。与虎门大桥一样,鹦鹉洲长江大桥亦是悬索桥。如此巧合下,桥梁波动,是悬索桥的锅吗?桥梁晃动的背后成因是什么?

1

是悬索桥的锅吗?

虎门大桥建于 1992 年,投资近 30 亿,全长 4588 米,是连通广州市南沙区与东莞市虎门镇的一座跨海大桥,同时也是我国第一座真正意义上的大规模现代化悬索桥。

资料显示,悬索桥(Suspension Bridge)是指以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁,主要由悬索、索塔、锚碇、吊杆、桥面系等部分组成。

相对于其他桥梁,悬索桥可以使用较少的物质建造,且能够跨越较长的距离,较为灵活。在水面上,悬索桥可以造得比较高,容许船在下面通过,且在造桥时无需在桥中心建立暂时的桥墩。

不过,作为一种大跨径柔性结构,悬索桥对风的作用十分敏感,抗风稳定性是影响悬索桥设计和施工的关键。其中,桥梁宽跨比,风的特性等都是影响抗风性的重要因素。

中铁四局集团市政工程有限公司总工程师周江接受《科技日报》的采访时表示,悬索桥是一种高超静定结构,影响抗风振能力的因素有很多。抗风设计规范的现代悬索桥,只要风力不超过设计允许范围,其结构安全性是不用担心的。

在虎门大桥产生波动之后,国内多名桥梁专家对桥梁进行了研判。5 月 6 日凌晨,广东省交通集团通报称:

专家组初判,虎门大桥悬索桥振动主要原因是沿桥跨边护栏连续设置水马,改变了钢箱梁的气动外形,在特定风环境条件下产生桥梁涡振现象。

另外,广东省交通集团还表示,根据现有数据和观测到的现象分析,此次振动不会影响大桥后续使用的结构安全和耐久性。

也就是说,虎门大桥的晃动只是偶发事件,不会影响后期使用

虎门大桥是悬索桥,要解决振动,可能也要从增加阻尼器的角度进行,但悬索桥比斜拉桥复杂,悬索上安装阻尼器并发挥作用比斜拉索更困难。

在建工社微课程看来,无论是斜拉桥还是悬索桥,都会有在面临某个频率时发生共振的风险。但不同的是,斜拉桥可以通过应用阻尼器抑制,而悬索桥因为天生的设计缺陷,阻尼器并不能充分发挥作用。

自然环境作用产生的大幅度振动有几种较常见的成因,一是地震作用,二是风力作用,再就是风雨振。

地震作用显而易见,桥梁墩柱或塔身传导地震波到桥面,造成桥梁产生大幅度振动。

风雨振则多出现在斜拉桥的拉索上,成因是雨水在拉索表面附着,迎风后上水线(风向与索截面的上切点)发生的有规律振动,由于拉索阻尼器的普及,这种振动基本可以消除。

最复杂的就是风力作用,风振主要是由于风的动力作用产生的。包括的现象有涡振、颤振、抖振和驰振。虎门大桥的主航道桥是跨径888m的悬索桥。大概率是悬索桥的正常风导致振动,振动的大致原因就是风吹过桥体,在风的下游方向会出现低气压区和涡流。

空气涡流会按一定频率从桥体脱落。如果这个涡流脱落的频率和桥本身的自振频率重合,就会产生振动。涡流脱落频率与风速成正相关,而桥梁本身各阶自振频率不随风速变化,也就是说当天风再大点或再小点都不会震动。

虎门大桥使用悬索结构是因为悬索桥优点多。

一、相对于其它桥梁结构悬索桥可以使用比较少的物质来跨越比较长的距离。悬索桥可以造得比较高,容许船在下面通过,在造桥时没有必要在桥中心建立暂时的桥墩,因此悬索桥可以在比较深的或比较急的水流上建造。

二、悬索桥比较灵活,因此它适合大风和地震区的需要,比较稳定的桥在这些地区必须更加坚固和沉重。悬索桥的坚固性不强,在大风情况下交通必须暂时被中断。

三、悬索桥(吊桥)指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。由于悬索桥可以充分利用材料的强度,并具有用料省、自重轻的特点,因此悬索桥在各种体系桥梁中的跨越能力最大,跨径可以达到1000米以上。