公理集合论
的有关信息介绍如下:公理集合论(axiomatic set theory),是数理逻辑的主要分支之一,是用公理化方法重建(朴素) 集合论的研究以及集合论的元数学和集合论的新的公理的研究。
19世纪70年代,德国数学家G.康托尔给出了一个比较完整的集合论,对无穷集合的序数和基数进行了研究。20世纪初,罗素悖论指出了康托尔集合论的矛盾。为了克服悖论,人们试图把集合论公理化,用公理对集合加以限制。
想要了解更多“公理集合论”的信息,请点击:公理集合论百科
公理集合论(axiomatic set theory),是数理逻辑的主要分支之一,是用公理化方法重建(朴素) 集合论的研究以及集合论的元数学和集合论的新的公理的研究。
19世纪70年代,德国数学家G.康托尔给出了一个比较完整的集合论,对无穷集合的序数和基数进行了研究。20世纪初,罗素悖论指出了康托尔集合论的矛盾。为了克服悖论,人们试图把集合论公理化,用公理对集合加以限制。
想要了解更多“公理集合论”的信息,请点击:公理集合论百科