化学价键理论?
的有关信息介绍如下:化学键理论就是指:偶联剂分子应至少含有两种官能团,第一种官能团在理论上可于增强材料起化学反应,第二种官能团在理论上应能参与树脂的固化反应,与树脂分子链形成化学键结合,于是,偶联剂分子像“桥”一样,将增强材料与基体通过共价键牢固地连接在一起了。
化学键理论的重要意义:
分子中元素原子的电子从一个原子转移到另一个原子而形成正负离子,由电荷相反的正负离子通过其过剩电荷的库伦力彼此吸引形成分子,这种静电库伦力称为离子键;原子间以共享电子对的方式形成分子,这种化学键称为共价键;在通常情况下,共价键共享的电子对分别由两个原子提供,有时共享的电子对则是由一个原子提供的,这样的共价键称为配位共价键;联结金属原子的键称为金属键,金属键的最显著特点是成键电子的流动性,它使金属表现出高度的导电性和导热性;由极性很强的化合物 H-X键上的氢原子与另一个键中电负性很大的原子 X上的孤立电子相互吸引而形成的分子之间的一种结合力叫氢键。氢键不是化学键,氢键属于分子间作用力。氢键的作用力比范德华力强而比化学键弱。氢键在生理学和蛋白质结构化学上具有重要的意义。
已解决问题 收藏 转载到QQ空间 化学,杂化轨道理论的解释? 10 [ 标签:杂化 轨道,化学,杂化 ] 谁个可以讲讲杂化的知识?
只需要讲有机物的。最好有图和解释详细的 匿名 回答:2 人气:15 解决时间:2009-03-21 19:28 满意答案轨道的相互叠加过程叫原子轨道的杂化。原子轨道叠加后产生的新的原子轨道叫杂化轨道。
⑴ 在形成分子(主要是化合物)时,同一原子中能量相近的原子轨道 (一般为同一能级组的原子轨道) 相互叠加(杂化)形成一组的新的原子轨道。
⑵ 杂化轨道比原来的轨道成键能力强,形成的化学键键能大,使生成的分子更稳定。由于成键原子轨道杂化后,轨道角度分布图的形状发生了变化(形状是一头大,一头小),杂化轨道在某些方向上的角度分布,比未杂化的p轨道和s轨道的角度分布大得多,它的大头在成键时与原来的轨道相比能够形成更大的重叠,因此杂化轨道比原有的原子轨道成键能力更强。
⑶ 形成的杂化轨道之间应尽可能地满足最小排斥原理(化学键间排斥力越小,体系越稳定),为满足最小排斥原理, 杂化轨道之间的夹角应达到最大。
⑷ 分子的空间构型主要取决于分子中σ键形成的骨架,杂化轨道形成的键为σ键,所以,杂化轨道的类型与分子的空间构型相关。
杂化类型有
1)sp杂化
同一原子内由一个ns轨道和一个np轨道发生的杂化,称为sp杂化。杂化后组成的轨道称为sp杂化轨道。sp杂化可以而且只能得到两个sp杂化轨道。实验测知,气态BeCl2中的铍原子就是发生sp杂化,它是一个直线型的共价分子。Be原子位于两个Cl原子的中间,键角180°,两个Be-Cl键的键长和键能都相等
2)sp2杂化
同一原子内由一个ns轨道和二个np轨道发生的杂化,称为sp2杂化。杂化后组成的轨道称为sp2杂化轨道。气态氟化硼(BF3)中的硼原子就是sp2杂化,具有平面三角形的结构。B原子位于三角形的中心,三个B-F键是等同的,键角为120°
(3)sp3杂化
同一原子内由一个ns轨道和三个np轨道发生的杂化,称为sp3杂化,杂化后组成的轨道称为sp3杂化轨道。sp3杂化可以而且只能得到四个sp3杂化轨道。CH4分子中的碳原子就是发生sp3杂化,它的结构经实验测知为正四面体结构,四个C-H键均等同,键角为109°28′。这样的实验结果,是电子配对法所难以解释的,但杂化轨道理论认为,激发态C原子(2s12p3)的2s轨道与三个2p轨道可以发生sp3杂化,从而形成四个能量等同的sp3杂化轨道
价键理论valence-bond theory,一种获得分子薛定谔方程近似解的处理方法。又称电子配对法。历史上最早发展起来的化学键理论。主要描述分子中的共价键和共价结合,其核心思想是电子配对形成定域化学键。
1927年W.H.海特勒和F.W.伦敦首次完成了氢分子中电子对键的量子力学近似处理,这是近代价键理论的基础。L.C.鲍林等加以发展,引入杂化轨道概念,综合成价键理论 ,成功地应用于双原子分子和多原子分子的结构。
价键理论与化学家所熟悉的经典电子对键概念相吻合,一出现就得到迅速发展。但价键理论计算比较复杂,使得后来发展缓慢。随着计算技术日益提高,该理论还会有新发展。
1927年,Heitler和London用量子力学处理氢气分子H2,解决了两个氢原子之间化学键的本质问题,使共价键理论从典型的Lewis理论发展到今天的现代共价键理论。
海特勒-伦敦方法处理氢分子 氢分子的哈密顿算符是:
式中rA1、rB1为核A、B与电子1之间的距离;r12为两个电子之间的距离;RAB为两个原子核之间的距离……(图1);1/RAB表示两个原子核之间的势能(氢核和电子电荷皆为 1基本电荷单位);1/rA1、1/rB1、…也是势能;墷是拉普拉斯算符。
海特勒-伦敦方法的要点在于如何恰当地选取基态H2的近似波函数Ψ(1,2)(或称尝试波函数),然后用变分公式使氢分子能量E为最低(假定Ψ是归一化的):
式中*表示复数共轭。考虑两个氢原子组成的体系,若两个氢原子A(有电子1)和B(有电子2)的基态波函数为:
φA⑴=πexp(-rA1)
φB⑵=πexp(-rB2)
假如两个氢原子相距很远,那么体系波函数是:
Φ1(1,2)=φA⑴φB⑵
实际上两个电子是不可区分的。同样合适的函数是:
Φ2(1,2)=φB⑴φA⑵
两个函数Φ1和Φ2都对应相同的能量。海特勒和伦敦就取两个函数的等权线性组合作为H2的变分函数:
Ψ(1,2)=c1Φ1+c2Φ2
解久期方程得c1=±c2,波函数和能量是:
式中
s称原子轨道的重叠积分。算出能量公式中各项,积分得:
式中Q、J、s都是R的函数。若用ΔE±表示分子能量与两个分离原子能量之差(图2):
ΔE±就是分子相对于分离原子能量为零时的能量。因为H11和H12都是负量,Ψ+态比Ψ-态能量更低,图2 中ΔE+曲线总处于ΔE-曲线的下面。图中虚线表示实验势能曲线。ΔE+曲线有极小值,表示形成了稳定的 H2。在平衡核间距 Re=0.87埃,计算得到离解能De=3.14电子伏(或称结合能)。与实验值Re=0.742埃,De=4.75电子伏略有差异,这反映了海特勒-伦敦法的近似程度。ΔE-在R 减小时一直升高。Ψ+称海特勒-伦敦函数,描述H2基态,Ψ-描述排斥态。
若考虑自旋,按照泡利原理,必须使分子波函数对电子交换是反对称的。则Ψ+必须乘以反对称自旋函数而给出自旋单重态:
Ψ-必须与对称自旋函数相乘得到自旋三重态:
Ψ+态描述了H2的共价键,其中电子自旋是配对的,故称共价键为电子对键。
电子密度分布 可以帮助理解共价键的本质。从波函数Ψ±出发可以计算总电子密度为两个单电子几率密度P±⑴和P±⑵的和乘以电子电量(a,u)。点(x,y,z)处的总电子密度为:
= ⑴
若φA、φB为氢原子的1s轨道,则:
式中rA、rB分别表示从点(x,y,z)到核A和B的距离。总电子电荷密度沿核间轴分布如图3。由ρ+曲线可见,电子电荷从核外区移向两核之间的区域,相当于电子同时吸引两核,因而降低了势能。由式⑴可知,两原子核愈接近,重叠积分愈大,电荷在核间区愈密集,也即共价键愈牢固(最大重叠原则)。但原子核愈接近,核排斥能和电子排斥能也同时增加,所以氢分子有一稳定的平衡核间距。Ψ-态的电子电荷从核间区移向核外区,使得核间屏蔽减少,能量升高,形成排斥态。
电子电荷在两核间密集,影响分子的平均动能〈T〉和平均势能〈V〉。为深入理解共价键的本质,按双原子分子的维里定理计算出2的〈T〉和〈V〉:
又分子总能量E=〈T〉+〈V〉。如已知E 随R 的改变的(dE/dR),则得:
=-【E+R(dE/dR)】
=2E+R(dE/dR)
计算得到的H2基态E、;、〈V〉都是R 的函数(图4)。
当核间距减少时,电子同核吸引的平均势能降低,但电子的排斥能的平均值增加,核的排斥能也增加。核间距达到某一值(1.401a0,a0为玻尔半径)时,平均总势能达到极小值,电子将在此势阱中运动,此时,dE/dR=0,平均动能等于平均总势能的负值的一半,氢分子的总能量则为势能平均值的一半。
处理氢分子的方法
价键理论是海特勒伦敦处理氢分子方法的推广,要点如下:①若两原子轨道互相重叠,两个轨道上各有一个电子,且电子自旋方向相反,则电子配对给出单重态,形成一个电子对键。②两个电子相互配对后,不能再与第三个电子配对,这就是共价键的饱和性。③遵循最大重叠原则,共价键沿着原子轨道重叠最大的方向成键 。共价键具有方向性。原子轨道通常在某个特定方向上有最大值,只有在此方向上轨道间才有最大重叠而形成共价键。不同原子轨道有不同成键能力。原子轨道的最大值作为原子轨道成键能力的度量,鲍林给出s、p、d、f等原子轨道成键能力依次为 1、6、10、14。在主量子数相同时,成键能力大的轨道形成的共价键较牢固。
氢分子中的化学键
量子力学计算表明,两个具有电子构型的H彼此靠近,两个1s电子以自旋相反的方式形成电子对,使体系的能量降低。吸热,即破坏H2的键要吸热(吸收能量),此热量D的大小与H2 分子中的键能有关。计算还表明,若两个1s电子保持以相同自旋的方式,则r越小,V越大。此时,不形成化学键。如图中上方红色曲线所示,能量不降低。H2中的化学键可以认为是电子自旋相反成对,使体系的能量降低。从电子云角度考虑,可认为H的1s轨道在两核间重叠,使电子在两核间出现的几率大,形成负电区,两核吸引核间负电区,使H结合在一起。
一种获得分子薛定谔方程近似解的处理方法。又称电子配对法。历史上最早发展起来的化学键理论。主要描述分子中的共价键和共价结合,其核心思想是电子配对形成定域化学键。将对 H2 的处理结果推广到其它分子中, 形成了以量子力学为基础的价键理论(V. B. 法) 。
共价键的形成
A, B 两原子各有一个成单电子,当 A, B 相互接近时, 两电子以自旋相反的方式结成电子对, 即两个电子所在的原子轨道能相互重叠, 则体系能量降低, 形成化学键, 亦即一对电子则形成一个共价键。
形成的共价键越多, 则体系能量越低, 形成的分子越稳定. 因此, 各原子中的未成对电子尽可能多地形成共价键. 配位键形成条件:一种原子中有对电子, 而另一原子中有可与对电子所在轨道相互重叠的空轨道. 在配位化合物中, 经常见到配位键. 在形成共价键时, 单电子也可以由对电子分开而得到。
共价键的方向性和饱和性
共价键的数目由原子中单电子数决定(包括原有的和激发而生成的. 例如: O 有两个单电子, H 有一个单电子, 所以结合成水分子, 只能形成2个共价键; C 最多能与 H 形成 4 个共价键.原子中单电子数决定了共价键的数目. 即为共价键的饱和性。
各原子轨道在空间分布是固定的, 为了满足轨道的最大重叠, 原子间成共价键时, 当然要具有方向性。共价键的键型
成键的两个原子间的连线称为键轴. 按成键与键轴之间的关系, 共价键的键型主要为两种:
a) 键
键特点: 将成键轨道, 沿着键轴旋转任意角度, 图形及符号均保持不变. 即键轨道对键轴呈圆柱型对称, 或键轴是 n 重轴。
b) 键
键特点: 成键轨道围绕键轴旋转180°时, 图形重合, 但符号相反.
键参数:化学键的形成情况, 完全可由量子力学的计算得出, 进行定量描述. 但通常用几个物理量加以描述, 这些物理量称为键参数。
a) 键能
AB(g) —— A(g) + B(g) H = EAB = DAB
对于双原子分子, 解离能DAB等于键能EAB,但对于多原子分子, 则要注意解离能与键能的区别与联系。另外, 相同的键, 在不同化合物中, 键长和键能不相等. 例如, CH3OH中和C2H6 中均有C-H键, 而它们的键长和键能不同。
c) 键角
是分子中键与键之间的夹角(在多原子分子中才涉及键角)。
如, H2S 分子, H-S-H 的键角为 92°, 决定了H2S 分子的构型为“V”字形。
又如: CO2中, O-C-O的键角为180°, 则CO2分子为直线形。
因而, 是决定分子几何构型的重要因素
首先要弄清楚原子的电子轨道和杂化类型,然后再了解价键知识就简单了