惯性矩的单位
的有关信息介绍如下:惯性矩的国际单位为m⁴。
惯性矩(moment of inertia of an area),一个几何量,通常被用作描述截面抵抗弯曲的性质。即面积二次矩,也称面积惯性矩。
常见截面的惯性矩公式:
1、矩形
其中:b—宽;h—高;
2、三角形
其中:b—底长;h—高;
3、圆形
其中:d—直径;
4、圆环形
其中:d—内环直径;D—外环直径。
扩展资料
任意截面图形内取微面积dA与其搭配z轴的距离y的平方的乘积y²dA定义为微面积对z轴的惯性矩,在整个图形范围内的积分则称为此截面对z轴的惯性矩Iz。
截面各微元面积与各微元至截面上某一指定轴线距离二次方乘积的积分。
惯性矩平移公式:
这里, Iz是对于z-轴的面积惯性矩、 Ix是对于平面质心轴的面积惯性矩、 A是面积、 d是 z-轴与质心轴的垂直距离。
参考资料来源:
参考资料来源:
惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。惯性矩的国际单位为(m^4)。
面积元素dA与其至x轴或y轴距离平方的乘积y^2dA或x^2dA,分别称为该面积元素对于x轴或y轴的惯性矩或截面二次轴矩。 对Z轴的惯性矩:IZ=∫Ay^2dA(积分式如左图)
对Y轴的惯性矩: Iy=∫Az^2dA 截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩。 极惯性矩常用计算公式:Ip=∫Aρ^2dA 矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12 三角形:b*h^3/36 圆形对于圆心的惯性矩:π*d^4/64 环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D d^4表示d的4次方。 需要明确因为坐标系不同计算公式也不尽相同。
结构构件惯性矩Ix
结构设计和计算过程中,构件惯性矩Ix为截面各微元面积与各微元至与X轴线平行或重合的中和轴距离二次方乘积的积分。主要用来计算弯矩作用下绕X轴的截面抗弯刚度。
结构构件惯性矩Iy
结构设计和计算过程中,构件惯性矩Iy为截面各微元面积与各微元至与Y轴线平行或重合的中和轴距离二次方乘积的积分。主要用来计算弯矩作用下绕Y轴的截面抗弯刚度。