海量数据的存储技术属于大数据的关键技术吗
的有关信息介绍如下:非常多的,问答不能发link,不然我给你link了。有譬如Hadoop等开源大数据项目的,编程语言的,以下就大数据底层技术说下。
简单以永洪科技的技术说下,有四方面,其实也代表了部分通用大数据底层技术:
Z-Suite具有高性能的大数据分析能力,她完全摒弃了向上升级(Scale-Up),全面支持横向扩展(Scale-Out)。Z-Suite主要通过以下核心技术来支撑PB级的大数据:
跨粒度计算(In-DatabaseComputing)
Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。
并行计算(MPP Computing)
Z-Suite是基于MPP架构的商业智能,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。
列存储 (Column-Based)
Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。
内存计算
得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。
杉岩海量对象存储MOS,针对海量非结构化数据存储的最优化解决方案,采用去中心化、分布式技术架构,支持百亿级文件及EB级容量存储,
具备高效的数据检索、智能化标签和分析能力,轻松应对大数据和云时代的存储挑战,为企业发展提供智能决策。
1、容量可线性扩展,单名字空间达EB级
SandStone MOS可在单一名字空间下实现海量数据存储,支持业务无感知的存储服务器横向扩容,为爆炸式增长的视频、音频、图片、文档等不同类型的非结构化数据提供完美的存储方案,规避传统NAS存储的单一目录或文件系统存储空间无法弹性扩展难题
2、海量小文件存储,百亿级文件高效访问
SandStone MOS基于完全分布式的数据和元数据存储架构,为海量小文件存储而生,将企业级NAS存储的千万文件量级提升至互联网规模的百亿级别,帮助企业从容应对几何级增长的海量小文件挑战。
3、中心灵活部署,容灾汇聚分发更便捷
SandStone MOS支持多数据中心灵活部署,为企业数据容灾、容灾自动切换、多分支机构、数据就近访问等场景提供可自定义的灵活解决方案,帮助企业实现跨地域多活容灾、数据流转、就近读写等,助力业务高速发展。
4、支持大数据和AI,统一数据存储和分析
SandStone MOS内置文件智能化处理引擎,实现包括语音识别、图片OCR识别、文件格式转换等批量处理功能,结合标签检索能力还可实现语音、证件照片检索,从而帮助企业更好地管理非结构化数据。同时,SandStone MOS还支持与Hadoop、Spark等大数据分析平台对接,一套存储即可满足企业数据存储、管理和挖掘的需求。