您的位置首页快问快答

混凝土中粉煤灰最大掺量

混凝土中粉煤灰最大掺量

的有关信息介绍如下:

混凝土中粉煤灰最大掺量

大掺量粉煤灰混凝土性能

介绍了大掺量粉煤灰商品混凝土(HVFAC)发展的意义、机理,对其和易性、凝结时间、水化热、耐腐蚀性、强度性能和抗碳化等主要性能进行了阐述,并对研究中存在的问题进行了分析,最后对掺量粉煤灰商品混凝土的应用前景进

0 引言

粉煤灰是一种工业废料,从粉煤灰的组成和微观结构来看,又是一种具有潜在火山灰活性的物质,能为建材工业所用。虽然目前,我国粉煤灰在建材工业中已得到部分的应用,但是还只能处理部分粉煤灰,且利用水平低 没有充分发挥粉煤灰的火山灰活性。如果能用粉煤灰取代部分水泥熟料,不仅可以减少水泥熟料生产量,减少生产水泥对资源的消耗和CO2排放量,且提高了粉煤灰的利用率及利用水平。通过粉煤灰的二次反应,改善水泥的性能,提高商品混凝土的性能。因此,如何在水泥生产中大量利用粉煤灰是亟待解决的重要课题。

从开发大掺量粉煤灰商品混凝土(High Volume F1y Ash Concrete,简称 HVFAC)的意义来看,它将高性能商品混凝土、大掺量粉煤灰商品混凝土和环保型低水泥用量商品混凝土的概念加以有机地结合,对于拓 展三者的涵义,走新型建材、绿色建材的道路,具有指导意义。关于大掺量的范围,通常认为,以纯水泥商品混凝土的水泥用量的百分数计,在30%以上即为大掺量粉煤灰商品混凝土,当然 在掺用粉煤灰的同时,水泥用量也减少几乎相同的数量。1.2 HVFAC的主要性能5)强度性能。粉煤灰掺入水泥商品混凝土中的作用效应早期是物理填充

粉煤灰是制作水泥的一种原材料,具有一定的活性。在水泥混凝土中掺一定量的粉煤灰,既可以替代一部分水泥,节约成本,又能增加和易性,减少泌水、离析现象,改善混凝土的性能。具有缓凝、减水,提高密实度和后期强度,降低水化热,抑制干裂、收缩,增强抗酸碱反应能力的作用。近年来已在国内外引起广泛的关注,并得到大量的推广应用。但是在混凝土中掺多少粉煤灰才能取得最佳效果呢?到目前为止,还没有较完善的理论体系。 八十年代以来,我国已对粉煤灰混凝土做了一定的研究、应用,并制定了一些规范。如《粉煤灰在混凝土和砂浆中应用技术规程》JGJ28-86,《粉煤灰混凝土应用技术规范》GBJ146-90等,对粉煤灰应用作了初步规定,制定了最大替代水泥量。见下表:粉煤灰最大替代水泥量%JGJ28-86N0-01水泥品种砼强度等级普通水泥矿渣水泥粉煤灰级别≤C1515~2510~20Ⅲ级C2010~1510Ⅰ~Ⅱ级C25~C3015~2010~15Ⅰ~Ⅱ级预应力砼≤15<10Ⅰ级粉煤灰最大替代水泥限量%GBJ146-90N0-02水泥品种砼类别硅酸盐水泥普通水泥矿渣水泥火山灰水泥预应力砼251510钢筋砼、高强砼、耐冻砼、蒸养砼30252015中、低强度砼、泵送砼、大体积砼、地下砼、水下砼50403020碾压砼65554535粉煤灰超量系数GBJ146-90N0-03粉煤灰级别Ⅰ级Ⅱ级Ⅲ级超量系数1.1~1.41.3~1.71.5~2.0在国标GBJ146-90中规定各级粉煤灰适用范围如下:1、Ⅰ级粉煤灰适用于跨度小于6米的预应力混凝土好钢筋混凝土。2、Ⅱ级粉煤灰适用于钢筋混凝土和无筋混凝土。3、Ⅲ级粉煤灰适用于无筋混凝土。4、C30及其C30以上的无筋粉煤灰混凝土宜采用Ⅰ、Ⅱ级粉煤灰,对于预应力混凝土、钢筋混凝土,设计强度等级在C30及其C30以上的无筋混凝土所有粉煤灰,经试验论证,可采用上述规定低一级的粉煤灰。国外的粉煤灰掺量,主要有70~120kg/m3,50~150kg/m3。欧、美等西方发达国家早已涉入这一领域的研究,我国起步较晚,有关研究不多,常直接以水泥用量的百分比以及超量部分来确定粉煤灰掺量。在南浦大桥、上钢、上海宝电等工程中大量采用,并积累了不少经验。我们经过大量试验、应用,发现粉煤灰的掺量与混凝土所用的原材料、设计强度等级、塌落度、浇筑气温等都有一定的关系。掺量在50~~130kg/m3范围对混凝土的凝结时间影响不大,早期强度降低有限。但混凝土的性能却能得到较大幅度的改善。在实际应用中,切入原材料理念,选用固定掺量法较易掌握,即预先确定粉煤灰的每m3用量的方法,欧、美国家大多采用固定掺量法。现将我们试验应用的结果总结出以下几个特点:1、最佳掺量与塌落度的关系在同强度等级条件下,随着塌落度增加,为了确保和易性、工作度,细集料和粉集料比例则应相应增大。我们发现最佳掺量与塌落度之间存在一定的比例关系,以C20砼为例,两者趋于线性关系,见下图:粉煤灰N0-04最佳130掺量kg/m34020180200塌落度㎜在C20设计强度等级混凝土,塌落度为40㎜,相同原材料,标准养护条件下,粉煤灰掺量分别取40、60、80、100kg/m3,我们各制取了25组试块,与基准混凝土配合比强度对比见下表:C20中塌落度为40㎜时粉煤灰不同掺量混凝土各龄期强度对比表MpaN0-04龄期掺量7d28d45d90d018.826.929.432.74018.326.230.334.16017.926.632.036.78017.125.731.835.910016.624.930.935.0从上表可以看出,粉煤灰掺量在60kg/m3混凝土强度最高,R28接近基准配合比强度,但R45却为基准混凝土强度的108.8%,那么它的最佳掺量可选取60kg/m3。同样是C20砼,在塌落度为160㎜时,粉煤灰掺量分别取100、120、140kg/m3,我们各制取了25组试块,与基准混凝土配合比强度对比见下表:C20在塌落度为160㎜时粉煤灰不同掺量混凝土各龄期强度对比表MpaN0-06龄期掺量7d28d45d90d019.227.830.633.210018.327.032.536.812017.627.334.038.214016.425.932.035.9由上表可发现,掺量在120kg/m3时,混凝土强度最理想,R45可达基准配合比强度的11.1%,但R90可达115.1%,那么它的最佳掺量可选取120kg/m3。我们对其它塌落度的C20混凝土试验证实也存在类似结果。通过对C20混凝土试验数据整理,得出简化经验式为:F?=+40kg/m3式中:F?----粉煤灰的最佳掺量(包括替代水泥量与超量之和),kg/m3T----混凝土的塌落度㎜2、最佳掺量与混凝土强度等级的关系在C10、C15低标号混凝土中,由于水泥用量较低、孔隙率大、和易性差,这时应当增加粉煤灰掺量,对混凝土中的粉集料进行补偿。经试验发现C15混凝土掺量100kg/m3,C10混凝土固定掺量在130kg/m3比较合理,能充分补充混凝土中的粉集料含量,使低标号混凝土表面也能光洁,有较好的外观质量。在C20及其以上,其最佳掺量随着混凝土设计强度等级的最大而增加。试验发现两者之间存在一定的比例关系,整理试验结果绘制如下图所示:粉N0-07煤灰最佳掺量kg/m3砼强度等级Mpa从图中可以看出,粉煤灰的最佳掺量与强度等级存在着比例关系,并随着塌落度的变化二变化。我们将前经验式修正为:F?=2Q+kg/m3式中:F?、T----同前Q----混凝土设计强度等级Mpa以C25混凝土为例,塌落度为60㎜,在相同原材料,标养条件下,粉煤灰材料分别取60、80、100、120kg/m3,我们各制取了25组试块,与基准混凝土配合比强度对比见下表:C25在塌落度为60㎜时粉煤灰不同掺量混凝土各龄期强度对比表MpaN0-08龄期掺量7d28d45d90d022.031.935.839.36021.631.136.940.98021.131.438.544.210020.729.337.842.612019.628.937.141.8从表可以发现,C25在塌落度为60㎜的混凝土,粉煤灰掺量在80kg/m3时,其强度较为理想。即80kg/m3就是它的最佳掺量,与上面推定的经验式相吻合。3、最佳掺量与浇筑气温的关系众所周知,试验室所进行的试验是在标养条件下养护的,而实际施工中,环境气温变化很大,对混凝土强度影响也较大。在炎热的夏季,随着气温的升高,混凝土特别是大体积混凝土越易受干缩、干裂危害。由于气温高时,早期强度增长较快,可以不考虑掺粉煤灰后混凝土早期强度低的特点,适当增加掺量,以多替代一些水泥,减少水化热。从而减少因水化热过大所造成的危害。而且掺量越大,其缓凝效果也会越明显,对夏季施工较有利。在低气温条件下,砼强度增长放慢,受干缩、干裂的危害较小,这时应当减少粉煤灰掺量。特别是冬期施工期间,为确保混凝土在受冻前超过临界抗冻强度,要求早期强度要高。这时,粉煤灰就应少掺或不掺。如果掺早强剂、早强型复合抗冻剂,或采用暖棚法、蒸汽养护法施工时,粉煤灰的掺量应用试验进行确定。4、最佳掺量与原材料的关系混凝土所用原材料不同,对粉煤灰掺量的影响也很大。在JGJ28-86、GBJ146-90中,对采用不同品种水泥,规定的最大替代量也是不同的。我们发现在使用粗砂时,混凝土外观质量较次,粉煤灰的掺量就应适当调大。粗砂中的细颗粒偏少,增加掺量可以给予补偿,降低混凝土的孔隙率。细砂中的细颗粒含量偏高,宜相应减少粉煤灰的掺量。也可以根据碎石、砂的实测空隙率,对粉煤灰的掺量进行适当调整。经过大量试验及应用,我们总结出掺粉煤灰混凝土配合比设计按以下步骤进行:1、根据设计规范要求,设计出不掺粉煤灰的基准配合比。2、根据混凝土强度等级,原材料情况、气温条件,确定粉煤灰的最佳掺量。1)先根据混凝土强度等级,初步确定最佳掺量,方法见下表:N0-09砼强度等级粉煤灰最佳掺量F?(≤130kg/m3)C10130C15100≥C20F?=2Q++а+β式中: F?、Q、T----同前а----浇筑气温修正值kg/m3β----砂的修正值kg/m32)测定浇筑时的大气温度(当采用室内浇筑时,以室内气温为准),

原来在2005年之前是不能超过10%的比例,现在最多可以达到50%。